Slow cycling of unphosphorylated myosin is inhibited by calponin, thus keeping smooth muscle relaxed.
نویسندگان
چکیده
A key unanswered question in smooth muscle biology is whether phosphorylation of the myosin regulatory light chain (RLC) is sufficient for regulation of contraction, or if thin-filament-based regulatory systems also contribute to this process. To address this issue, the endogenous RLC was extracted from single smooth muscle cells and replaced with either a thiophosphorylated RLC or a mutant RLC (T18A/S19A) that cannot be phosphorylated by myosin light chain kinase. The actin-binding protein calponin was also extracted. Following photolysis of caged ATP, cells without calponin that contained a nonphosphorylatable RLC shortened at 30% of the velocity and produced 65% of the isometric force of cells reconstituted with the thiophosphorylated RLC. The contraction of cells reconstituted with nonphosphorylatable RLC was, however, specifically suppressed in cells that contained calponin. These results indicate that calponin is required to maintain cells in a relaxed state, and that in the absence of this inhibition, dephosphorylated cross-bridges can slowly cycle and generate force. These findings thus provide a possible framework for understanding the development of latch contraction, a widely studied but poorly understood feature of smooth muscle.
منابع مشابه
Inhibition by calponin of isometric force in demembranated vascular smooth muscle strips: the critical role of serine-175.
alpha-Calponin is a thin-filament-associated protein which has been implicated in the regulation of smooth muscle contraction. Quantification of the tissue content of rat tail arterial smooth muscle revealed approximately half the amount of alpha-calponin relative to actin compared with chicken gizzard and other smooth muscles, suggesting that this tissue would be particularly suitable for inve...
متن کاملA comparison of the effects of calponin on smooth and skeletal muscle actomyosin systems in the presence and absence of caldesmon.
Thiosphosphorylated smooth muscle myosin and skeletal muscle myosin, both of which express Ca(2+)-independent actin-activated MgATPase activity, were used to examine the functional effects of calponin and caldesmon separately and together. Separately, calponin and caldesmon inhibited the actin-activated MgATPase activities of thiophosphorylated smooth muscle myosin and skeletal muscle myosin, c...
متن کاملSmooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro
Although it is generally believed that phosphorylation of the regulatory light chain of myosin is required before smooth muscle can develop force, it is not known if the overall degree of phosphorylation can also modulate the rate at which cross-bridges cycle. To address this question, an in vitro motility assay was used to observe the motion of single actin filaments interacting with smooth mu...
متن کاملLight chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments
In smooth muscles there is no organized sarcomere structure wherein the relative movement of myosin filaments and actin filaments has been documented during contraction. Using the recently developed in vitro assay for myosin-coated bead movement (Sheetz, M.P., and J.A. Spudich, 1983, Nature (Lond.)., 303:31-35), we were able to quantitate the rate of movement of both phosphorylated and unphosph...
متن کاملMyosin light chain kinase- and PKC-dependent contraction of LES and esophageal smooth muscle.
In smooth muscle cells enzymatically isolated from circular muscle of the esophagus (ESO) and lower esophageal sphincter (LES), ACh-induced contraction and myosin light chain (MLC) phosphorylation were similar. Contraction and phosphorylation induced by purified MLC kinase (MLCK) were significantly greater in LES than ESO. ACh-induced contraction and MLC phosphorylation were inhibited by calmod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 14 شماره
صفحات -
تاریخ انتشار 1997